'Together we learn - United we achieve'

TOWNVILLE INFANTS' SCHOOL
Maths calculation policy

Calculation Policy

This policy is a working document and will be revised and amended as necessary. It includes some examples of children's work. Some images have been copied from the NCETM PD materials.

Year 1 - Addition			
Objective, Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Comparing Objects, groups of objects Length, weight, mass, heavier, lighter, same, equal	People's height, distance, mass. Use of pan balances using numicon to show equivalence, < > Comparing multiple objects Use of concrete materials eg. Compare bears, jewels, cubes etc to create groups of different sizes to compare		
Using < > and = Fewer, more, less than, more than, equal to, fewer than	Use a multilink staircase in two colours.		Use variation with missing boxes and missing symbols. $\begin{array}{ll} 3 \bigcirc 4 & 4>\square \\ 2 \bigcirc 2 & \square<6 \end{array}$
Finding one more, finding one less		(less	One more/less sentences - example one: 1 more than 3 is 1 less than 2 is \square 1 more than \square is 1 1 less than \square is 1

Year 1 - Addition				
Objective, Strategy \& Key Vocabulary	Concrete	Pictorial		Abstract
Adding 1 gives 1 more			6	$\xrightarrow[6+1=7]{+1}$
Increasing an amount Augmentation	Use FIRST, THEN, NOW and range of practical situations for showing augmentation. E.g. first there were three children on carpet then 2 more came. Now there are 5 children on the carpet.			
Stories of numbers within 10	Children should work with doubled sided counters and ten frame. Start with 7 red, turn one over, tell me the 'story'? Turn one more over. What is the 'story'? Continue. Complete this for stories of all numbers up to 10.			$\begin{aligned} & 7+0=7 \\ & 6+1=7 \\ & 5+2=7 \\ & 4+3=7 \\ & 3+4=7 \\ & 2+5=7 \\ & 1+6=7 \\ & 0+7=7 \end{aligned}$

Year 1 - Addition

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar. 000000 \square	Use pictures to add two numbers together as a group or in a bar.	Use the part-part whole diagram as shown below to move into the abstract.
Regrouping to make 10. This is an essential skill for column addition later.	$6+5=11$ 2 more than 5.	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	If I am at seven, how many more do I need to make 10. How many more do I add on now? $7+4=11$
Represent \& use number bonds and related subtraction facts within 20	Start with the bigger number and use the smaller number to make 10. Use tens frames.	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9+5=14$	Emphasis should be on the language '1 more than 5 is equal to $6 . '$ ' 2 more than 5 is $7 .{ }^{\prime}$ '8 is 3 more than 5.'

Year 1 - Addition			
Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar. 0000000	Use pictures to add two numbers together as a group or in a bar.	Use the part-part whole diagram as shown below to move into the abstract. $4+3=7$ 5 $10=6+4$
Regrouping to make 10. This is an essential skill for column addition later.	$6+5=11$ 2 more than 5.	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	If I am at seven, how many more do I need to make 10. How many more do I add on now? $7+4=11$
Represent \& use number bonds and related subtraction facts within 20	Start with the bigger number and use the smaller number to make 10. Use tens frames.	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10.	Emphasis should be on the language '1 more than 5 is equal to 6 .' '2 more than 5 is $7 .{ }^{\prime}$ '8 is 3 more than 5.'

Adding 10

Bridging/
compensating

+	0	1	2	3	4	5	6	7	8	9	10
0	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$
1	$1+0$	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+0$	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract									
Adding multiples of ten	Model using dienes and bead strings. $50=30+20$	Use representations for base ten. \qquad tens and \qquad tens makes \qquad tens	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \\ & \square+30=50 \end{aligned}$									
Use known number facts Part part whole	Children explore ways of making numbers within 20.	$\begin{gathered} 20=\square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$									
Using known facts		Children draw representations of H, T and O. $\begin{aligned} \because+\therefore & =\therefore \\ \\|\\|+\\|\\| & =\\| \\|\\| \\| \\ \square+\text { 晫 } & =\\| \end{aligned}$	$3+4=7$ Leads to... $\begin{gathered} 30+40=70 \\ \text { Leads to... } \end{gathered}$ $300+400+700 \ldots$ ' 3 things and 4 things is always 7 things'									
Bar model	$3+4=7$	$3+5=8$	$14+16=30$30 14 16									

Year 2 - Addition			
Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten'. Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part-part-whole and number line to model. $17+5=22$ 20 17	Explore related facts
Add a 2-digit number and tens	Explore that the ones digit does not change. $25+10=35$		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \\ & \square+30=67 \end{aligned}$
Add two 2-digit numbers without bridging. 'Friendly numbers'	Model using base 10, place value counters and numicon.	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 25+47 \\ 20+5 \quad 40+7 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$

Year 2 - Addition

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Add any two 2-digit numbers	Base 10 and part-part- whole models.	$26+30+7$	$24+38=$ \square $29+$ \square $=51$ $38+24=$ \square $\square+22=51$
Add three 1-digit numbers	Combine to make magic 10 first where relevant, or bridge 10 then add third.	Use language of first, then, then, now. Pictorial: Use part-part-whole to show magic ten	Combine the two numbers that make/ bridge ten then add on the third. $\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$
Adding two numbers that bridge 10.	Use double sided counters and ten frames. Move counters to fill the ten frame and make Magic 10	Show on a number line how 5 is portioned into adding three, then adding 2.	

Year 2 - Addition

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Column Addition-no regrouping (friendly numbers) Add two or three 2 or 3digit numbers.	Model using Dienes or numicon. Add together the ones first, then the tens. Move to using place value counters.	Children move to drawing the counters using a tens and one frame.	Add the ones first, then the tens, then the hundreds $\begin{array}{r} 248 \\ +131 \\ \hline 379 \end{array}$
Column Addition with regrouping. Use language of 'take and make' to describe carrying	Exchange ten ones for a ten. Model using numicon and place value counters.	Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line.	Use expanded method only when needed. Start by partitioning the numbers before formal column to show the exchange $\begin{aligned} & 20+5 \\ & 40+8 \\ & 60+13 \end{aligned}=73 \begin{aligned} & 536 \\ & +85 \\ & \frac{621}{11} \end{aligned}$

Year 1 - Subtraction

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Part-Part-Whole model	Link to addition. Use part-part-whole model to model the inverse. If 10 is the whole and 6 is one of the parts, what is the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model. $\begin{aligned} & 12-5=7 \\ & 12-7=5 \\ & 7=12-5 \\ & 5=12-7 \end{aligned}$
Subtract by making ten	Make 15 on the tens frame. Take 5 away to make ten, then take 4 more away so that you have taken 9. $15-9$ $\begin{gathered} 15-9 \\ / \backslash 4 \end{gathered}$ $15-5=10$ $10-4=6$ $15-9=6$	Jump back 5 first, then another 4. Use ten as the stopping point.	How many do we take off first to get to 10? How many are left to take off?$16-9$11 $?$ 6
Compare numbers by finding the difference.	There are 2 more pencils than erasers. There are 2 more red cars than blue cars.	Use a number line to count on..	Erin has 12 sweets and her sister has 5. How many more does Erin have than her sister?

Year 1 - Subtraction

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Counting on to next ten Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Use a bead bar or bead strings to model counting to next ten and the rest. $34-28$ 28 to 30 is 2,30 to 34 is 4 . So, $34-28=6$	Use a number line to count on to next ten and then the rest. Begin with bead line, move to landmarked line then to ENL.	$\begin{gathered} 93-76=17 \\ 76 \longrightarrow 80=4 \\ 80 \longrightarrow 93=13 \\ 13+4=17 \end{gathered}$
Subtractions as difference	Ben is ten years old. Charlotte is three years old. What is the difference? Ben is ten years old Charlotte is three years olc \square 10 years old 3 years old		The difference between 24 and 16 is 8.

Year 2 - Subtraction			
Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Subtracting a multiple of 10	Children use dienes, PV counters or Numicon. They remove the correct number of tens. $32-10=22$	Children draw rods and cubes and cross off multiples of ten.	$64-10=$ \square $64-20=$ \square $64-30=$ \square $64-\square=24$ $\square-50=14$
Subtract a single digit from a two-digit number No regrouping	Explore that $9-3=6$ so 29-3 $=26$	$9-3=6$ $19-3=16$	$\begin{aligned} & 9-3=6 \\ & 19-6=13 \\ & 29-6=23 \mathrm{etc} \end{aligned}$
Regroup a ten into ten ones	Use a place value chart to show how to change a ten into ten ones, use the term 'take and make'.	$20-4=16$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	Use base 10 to show how to partition the number when subtracting without regrouping. $34-13=21$	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$

Year 1 - Multiplication		
Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial
Double numbers to 10	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling	Draw pictures and bar models to show how to double numbers Double 4 is 8
Counting in groups of 2	Count in 2s using real life objects and contexts. 	Children make representations to show counting in multiples of 2. Count in multiples of a number aloud. Show jumps of 2 on a number line.
Counting in groups of 10	Use real life objects and contexts to count in groups of 10	Use and draw representations for counting in multiples of 10. Count in multiples of 10 aloud Show jumps of 10 on a number line.
Counting in groups of 5	Use real life objects and contexts to count in groups of 5	Use and draw representations for counting in multiples of 5. Count in 5 s aloud.

Year 1 - Multiplication		
Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial
Understand and use arrays	Use objects laid out in arrays to find the answers to 2 lots of 5, 3 lots of 2 etc.	Make and draw representations of arrays to show understanding
Equal/non equal groups	Use real life objects and contexts to examine equal and non-equal groups. There are 3 equal groups. There are 5 in each group.	Children make/match representations of real-life problems to show equal groups and find the total. There are 4 equal groups. There are $\mathbf{2}$ in each group. There are 8 altogether.

Year 1 - Multiplication			
Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Double a 2-digit number	Model doubling using dienes and PV counters	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together.
Understand equal and non equal groups	These are non- equal groups These are equal groups. There are 5 equal groups. Each group has 3 cakes.	Make representations and drawings of equal groups I have 4 groups of 3 .	

Year 2 - Multiplication

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Use repeated addition for multiplication	Use objects and real-life contexts. There are 5 groups of 2 . There are 10 socks altogether. There are 3 groups of 3 . There are 9 altogether.	Make and draw representations to show repeated addition There are 3 sweets in one bag. How many sweets are in 5 bags altogether? Use bar models for representations of repeated additions.	Create number sentences using re-peated addition to match representations. $3+3+3+3=12$
Relate repeated addition to multiplication using the x sign.	Write multiplication sentences to match repeated addition. $\begin{gathered} 2+2+2+2 \\ 4 \times 2 \end{gathered}$	Children make and draw representations and record both an addition sentence and a multiplication sentence. $\begin{gathered} 1+1+1+1+1+1=6 \\ 6 \times 1=6 \end{gathered}$	Write multiplication sentences to match repeated addition, without the support of representations. $\begin{gathered} 2+2+2+2+2=10 \\ 5 \times 2=10 \end{gathered}$

Year 2 - Multiplication

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Understand the 2, 5 and 10 times table	Use objects and real-life contexts for multiples of 2, 5 and 10 $\begin{aligned} & 3 \times 2=6 \\ & 6=3 \times 2 \end{aligned}$	Make and draw representations for 2, 5 and 10 times tables $4 \times 10=40$ Number lines, bead strings, counting sticks and bar models should be used to show representation of counting in multiples. $5 \times 2=10$	Understand the terms factor and product Count in multiples of a number aloud.

Year 2 - Multiplication

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative. The order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity. 5 groups of 22 groups of 5 2, five times 5, two times	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Year 1 - Division

Objective \& Strategy Key Vocabulary	Concrete	Pictorial	
Find half of numbers to 20.	Real life and practical contexts are used to find half of numbers up to 20.	Children use manipulatives to represent real life problems.	6 3 3 half of $6=3$ double $3=6$
Understand division as sharing into equal groups Use Gordon ITPs for modelling	Children solve real life problems using real objects. There are eight sweets. Daisy and Will share these equally. How many do they get each? I have 10 cubes, can you share them equally in 2 groups? There are 2 equal groups. Each group has 5.	Children use pictures or shapes to sharequantities. 8 shared between 2 is 4 10 shared between 2 is 5	

Year 2 - Division			
Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Division as sharing (partitive)	There are 20 conkers shared equally be- tween 5 children. Each child gets 4 conkers.	Children use pictures or shapes to share quantities. They may use bar modelling to show and support understanding. Number lines are used to show skip counting (counting forwards) and repeated subtraction (counting backwards).	$20 \div 5=4$
Division as grouping (quotitive)	Use cubes, counters or real objects or to aid understanding. There are 15 biscuits, there are 5 in each bag. How many bags?		15 divided into groups of 5 is 3 . $15 \div 5=3$

